Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cation distribution and Mossbauer spectral studies of Mg0.2Mn0.5Ni0.3InxFe2-xO4 ferrites (x = 0.0, 0.05 and 0.10)

Identifieur interne : 001088 ( Main/Repository ); précédent : 001087; suivant : 001089

Cation distribution and Mossbauer spectral studies of Mg0.2Mn0.5Ni0.3InxFe2-xO4 ferrites (x = 0.0, 0.05 and 0.10)

Auteurs : RBID : Pascal:13-0205084

Descripteurs français

English descriptors

Abstract

The effect of substitution of diamagnetic indium ions in Mg-Mn-Ni ferrite with the composition Mg0.2Mn0.5Ni0.3InxFe2-xO4 (x = 0.0, 0.05 and 0.10) synthesized by citrate precursor technique has been investigated. Crystallographic and magnetic properties have been investigated using X-ray diffraction, TEM, VSM and Mössbauer spectroscopy. The single phase cubic spinel structure of these samples has been confirmed from X-ray diffraction analyses. In3+ ions initially prefer tetrahedral A-site up to x = 0.05 due to which saturation magnetization and magnetic moment increases, followed by subsequent decrease when indium ions begin to occupy octahedral B-site for higher concentration of x. Magnetization measurements exhibit Neel's collinear ferrimagnetic structure for samples up to x = 0.05. Mössbauer spectra of these samples studied at 300 K show two characteristic ferrimagnetic Zeeman sextets for x = 0.0, followed by relaxation phenomenon corresponding to x = 0.05 and 0.10. Mössbauer measurements also show dependence of Zeeman spectral lines on smaller particle size which is indicative of their superparamagnetic nature. The dependence of Mössbauer parameters such as isomer shift, quadrupole splitting, linewidth and hyperfine magnetic field on In3+ ions concentration have been discussed. The variation of hyperfine magnetic field with increasing In3+ ions content has been explained by Neel's molecular field theory.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0205084

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Cation distribution and Mossbauer spectral studies of Mg
<sub>0.2</sub>
Mn
<sub>0.5</sub>
Ni
<sub>0.3</sub>
In
<sub>x</sub>
Fe
<sub>2-x</sub>
O
<sub>4</sub>
ferrites (x = 0.0, 0.05 and 0.10)</title>
<author>
<name sortKey="Verma, S" uniqKey="Verma S">S. Verma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Himachal Pradesh University</s1>
<s2>Summer-Hill, Shimla 171 005</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Summer-Hill, Shimla 171 005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chand, J" uniqKey="Chand J">J. Chand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Himachal Pradesh University</s1>
<s2>Summer-Hill, Shimla 171 005</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Summer-Hill, Shimla 171 005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Batoo, K M" uniqKey="Batoo K">K. M. Batoo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>King Abdullah Institute of Nanotechnology, King Saud University</s1>
<s2>Riyadh 11451</s2>
<s3>SAU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Riyadh 11451</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Singh, M" uniqKey="Singh M">M. Singh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Himachal Pradesh University</s1>
<s2>Summer-Hill, Shimla 171 005</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Summer-Hill, Shimla 171 005</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0205084</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0205084 INIST</idno>
<idno type="RBID">Pascal:13-0205084</idno>
<idno type="wicri:Area/Main/Corpus">000C43</idno>
<idno type="wicri:Area/Main/Repository">001088</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Citrates</term>
<term>Collinear magnetism</term>
<term>Crystallographic site</term>
<term>Cubic lattices</term>
<term>Ferrimagnetic materials</term>
<term>Ferrimagnetism</term>
<term>Hyperfine magnetic field</term>
<term>Indium</term>
<term>Ion distribution</term>
<term>Isomer shift</term>
<term>Line widths</term>
<term>Magnetic moments</term>
<term>Magnetic properties</term>
<term>Moessbauer effect</term>
<term>Moessbauer spectroscopy</term>
<term>Molecular field approximation</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Particle size</term>
<term>Precursor</term>
<term>Property composition relationship</term>
<term>Quadrupolar splitting</term>
<term>Quantity ratio</term>
<term>Relaxation</term>
<term>Saturation magnetization</term>
<term>Spinels</term>
<term>Superparamagnetism</term>
<term>Transmission electron microscopy</term>
<term>X-ray diffraction analysis</term>
<term>XRD</term>
<term>Zeeman effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Distribution ion</term>
<term>Spectrométrie Mössbauer</term>
<term>Relation composition propriété</term>
<term>Indium</term>
<term>Citrate</term>
<term>Précurseur</term>
<term>Propriété magnétique</term>
<term>Diffraction RX</term>
<term>Microscopie électronique transmission</term>
<term>Spinelles</term>
<term>Analyse diffraction RX</term>
<term>Site cristallographique</term>
<term>Aimantation saturation</term>
<term>Moment magnétique</term>
<term>Réseau cubique</term>
<term>Matériau ferrimagnétique</term>
<term>Nanoparticule</term>
<term>Ferrimagnétisme</term>
<term>Effet Mössbauer</term>
<term>Effet Zeeman</term>
<term>Relaxation</term>
<term>Dimension particule</term>
<term>Superparamagnétisme</term>
<term>Déplacement isomère</term>
<term>Décomposition quadripolaire</term>
<term>Largeur raie</term>
<term>Champ magnétique hyperfin</term>
<term>Effet concentration</term>
<term>Approximation champ moléculaire</term>
<term>Nanomatériau</term>
<term>7550G</term>
<term>8107</term>
<term>7560E</term>
<term>7680</term>
<term>Magnétisme colinéaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of substitution of diamagnetic indium ions in Mg-Mn-Ni ferrite with the composition Mg
<sub>0.2</sub>
Mn
<sub>0.5</sub>
Ni
<sub>0.3</sub>
In
<sub>x</sub>
Fe
<sub>2-x</sub>
O
<sub>4</sub>
(x = 0.0, 0.05 and 0.10) synthesized by citrate precursor technique has been investigated. Crystallographic and magnetic properties have been investigated using X-ray diffraction, TEM, VSM and Mössbauer spectroscopy. The single phase cubic spinel structure of these samples has been confirmed from X-ray diffraction analyses. In
<sup>3+</sup>
ions initially prefer tetrahedral A-site up to x = 0.05 due to which saturation magnetization and magnetic moment increases, followed by subsequent decrease when indium ions begin to occupy octahedral B-site for higher concentration of x. Magnetization measurements exhibit Neel's collinear ferrimagnetic structure for samples up to x
<sub>=</sub>
0.05. Mössbauer spectra of these samples studied at 300 K show two characteristic ferrimagnetic Zeeman sextets for x
<sub>=</sub>
0.0, followed by relaxation phenomenon corresponding to x
<sub>=</sub>
0.05 and 0.10. Mössbauer measurements also show dependence of Zeeman spectral lines on smaller particle size which is indicative of their superparamagnetic nature. The dependence of Mössbauer parameters such as isomer shift, quadrupole splitting, linewidth and hyperfine magnetic field on In
<sup>3+</sup>
ions concentration have been discussed. The variation of hyperfine magnetic field with increasing In
<sup>3+</sup>
ions content has been explained by Neel's molecular field theory.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>565</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Cation distribution and Mossbauer spectral studies of Mg
<sub>0.2</sub>
Mn
<sub>0.5</sub>
Ni
<sub>0.3</sub>
In
<sub>x</sub>
Fe
<sub>2-x</sub>
O
<sub>4</sub>
ferrites (x = 0.0, 0.05 and 0.10)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VERMA (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHAND (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BATOO (K. M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SINGH (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Himachal Pradesh University</s1>
<s2>Summer-Hill, Shimla 171 005</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>King Abdullah Institute of Nanotechnology, King Saud University</s1>
<s2>Riyadh 11451</s2>
<s3>SAU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>148-153</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000504139060240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>48 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0205084</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of substitution of diamagnetic indium ions in Mg-Mn-Ni ferrite with the composition Mg
<sub>0.2</sub>
Mn
<sub>0.5</sub>
Ni
<sub>0.3</sub>
In
<sub>x</sub>
Fe
<sub>2-x</sub>
O
<sub>4</sub>
(x = 0.0, 0.05 and 0.10) synthesized by citrate precursor technique has been investigated. Crystallographic and magnetic properties have been investigated using X-ray diffraction, TEM, VSM and Mössbauer spectroscopy. The single phase cubic spinel structure of these samples has been confirmed from X-ray diffraction analyses. In
<sup>3+</sup>
ions initially prefer tetrahedral A-site up to x = 0.05 due to which saturation magnetization and magnetic moment increases, followed by subsequent decrease when indium ions begin to occupy octahedral B-site for higher concentration of x. Magnetization measurements exhibit Neel's collinear ferrimagnetic structure for samples up to x
<sub>=</sub>
0.05. Mössbauer spectra of these samples studied at 300 K show two characteristic ferrimagnetic Zeeman sextets for x
<sub>=</sub>
0.0, followed by relaxation phenomenon corresponding to x
<sub>=</sub>
0.05 and 0.10. Mössbauer measurements also show dependence of Zeeman spectral lines on smaller particle size which is indicative of their superparamagnetic nature. The dependence of Mössbauer parameters such as isomer shift, quadrupole splitting, linewidth and hyperfine magnetic field on In
<sup>3+</sup>
ions concentration have been discussed. The variation of hyperfine magnetic field with increasing In
<sup>3+</sup>
ions content has been explained by Neel's molecular field theory.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E60E</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70F80</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70E50G</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70E20</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Distribution ion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ion distribution</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Distribución ión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Spectrométrie Mössbauer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Moessbauer spectroscopy</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Relation composition propriété</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Property composition relationship</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Relación composición propiedad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Citrate</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Citrates</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Propriété magnétique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Magnetic properties</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>XRD</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spinelles</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Spinels</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Analyse diffraction RX</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>X-ray diffraction analysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Site cristallographique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Crystallographic site</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sitio cristalográfico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Aimantation saturation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Saturation magnetization</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Imanación saturación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Moment magnétique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Magnetic moments</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Matériau ferrimagnétique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Ferrimagnetic materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Ferrimagnétisme</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Ferrimagnetism</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Effet Mössbauer</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Moessbauer effect</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Effet Zeeman</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Zeeman effect</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Relaxation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Relaxation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Dimension particule</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Particle size</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Superparamagnétisme</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Superparamagnetism</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Déplacement isomère</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Isomer shift</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Décomposition quadripolaire</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Quadrupolar splitting</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Descomposición cuadripolar</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Largeur raie</s0>
<s5>37</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Line widths</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Champ magnétique hyperfin</s0>
<s5>38</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Hyperfine magnetic field</s0>
<s5>38</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Campo magnético hiperfino</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>39</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Approximation champ moléculaire</s0>
<s5>40</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Molecular field approximation</s0>
<s5>40</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Aproximación campo molecular</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>41</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>41</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7550G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>7560E</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>7680</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>Magnétisme colinéaire</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="35" i2="3" l="ENG">
<s0>Collinear magnetism</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>189</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001088 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001088 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0205084
   |texte=   Cation distribution and Mossbauer spectral studies of Mg0.2Mn0.5Ni0.3InxFe2-xO4 ferrites (x = 0.0, 0.05 and 0.10)
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024